Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
نویسندگان
چکیده
Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast.
منابع مشابه
Delft University of Technology Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
متن کامل
Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consum...
متن کاملCross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae
BACKGROUND Overexpression of the PGM2 gene encoding phosphoglucomutase (Pgm2p) has been shown to improve galactose utilization both under aerobic and under anaerobic conditions. Similarly, xylose utilization has been improved by overexpression of genes encoding xylulokinase (XK), enzymes from the non-oxidative pentose phosphate pathway (non-ox PPP) and deletion of the endogenous aldose reductas...
متن کاملComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiae
Economical biofuel production from plant biomass requires the conversion of both cellulose and hemicellulose in the plant cell wall. The best industrial fermentation organism, the yeast Saccharomyces cerevisiae, has been developed to utilize xylose by heterologously expressing either a xylose reductase/xylitol dehydrogenase (XR/XDH) pathway or a xylose isomerase (XI) pathway. Although it has be...
متن کاملFunctional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.
In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed...
متن کامل